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Abstract

Adaptive radar processing has been wildly successful in downward looking radars that must detect moving

targets in the midst of strong clutter returns. Compressed sensing has found applications in radar problems but has

not been studied with respect to clutter and other structured interference. The performance of compressed sensing

radar techniques in the presence of clutter is explored herein and compared to existing adaptive radar processing

methods, including Space-Time Adaptive Processing (STAP), via Monte Carlo exploration of detection performance.

Finally, we propose extensions to standard �1 optimization techniques to account for known interference covariance

matrix statistics. These extensions out-perform current compressed sensing techniques, out-perform the fully-sampled,

non-adaptive matched filter estimate, and approach the performance level of the fully-sampled STAP estimate.

Index Terms

Compressed sensing, radar clutter, radar signal processing.

I. INTRODUCTION

Main-beam clutter may be safely neglected in some radar applications. But in many airborne and surveillance

applications strong ground returns swamp target energy and cannot be neglected. While a more energetic waveform

can bring targets out of noise interference it illuminates target and clutter alike doing nothing for signal-to-clutter ratio.

These ground returns can be tens of decibels stronger than those of the target making detection of targets difficult.

But they exhibit structure that depends on the radar platform velocity, radar boresight, and ground geometry. This

structure can be described by an interference covariance matrix that represents the relationship between interference

in the various measurement cells. The interference covariance matrix can be used to build a filter that minimizes

clutter energy while preserving target energy. Little prior work exists on techniques for incorporating the covariance
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information into a compressed sensing problem solution. This work addresses that shortcoming by describing such a

technique and showing that it improves the probability of detection of targets in the midst of strong clutter returns.

The remainder of this work is organized as follows: Section I lays out the problem of interest with respect to

prior work in adaptive radar filtering and compressed sensing. Section II describes the testing environment and the

proposed solution methods. Section III defines the manner in which these solution methods have been judged as

well as presenting the results thereof. Finally, Section IV offers some comments as to future work.

A. Space-Time Adaptive Processing

Space-Time Adaptive Processing (STAP) is an adaptive radar signal processing technique that has proven useful

in the filtering of structured interference like clutter and jammers [1], [2]. It typically operates on a data cube that is

sampled in fast-time (sample-to-sample) to calculate range, slow-time (pulse-to-pulse) to calculate Doppler frequency

and thus radial velocity, and space (element-to-element) to calculate angle of arrival [3]. This work assumes a

single-dimension uniform linear array. Though these results are generalizable to a planar array, in this work we

neglect that fourth dimension in the interest of clarity and computational tractability.

To analyze and operate on this data cube it is reshaped into a vector y ∈ C
n. We model these measurements

as consisting of signal and clutter {x, c} ∈ C
n components that are mapped from the environment onto the

measurements by a square matrix S ∈ C
n×n. The sampling rates in each dimension define bins in each of the

sampled dimensions. The intersection of these bins forms a grid of voxels over the three-dimensional observation

space. The vector x is the indicator vector that contains the true reflectivity of targets at each grid location – meaning

it contains mostly zeros at all those gridpoints that contain no target. And c is a clutter vector containing the geometry-

and terrain-dependent clutter reflectivity at the grid locations. We model these as a constant gamma-distributed

random variable as in [4]. Other models may be more appropriate at low grazing angles.

In the real world targets are not confined to a discrete set of locations nor is clutter fully resolved by the sampling

rate in either range or cross-range. We use this simpler model for analysis and computation cognizant that it is

limited in this way. When we stimulate and test this model we do so with data generated by higher resolution and

higher fidelity models that include these off-grid targets, unresolved returns, and other realistic non-linearities.

Each column of S is a steering vector to a bin in the range-angle-Doppler grid. Much of the work in STAP

and other adaptive radar literature uses the term “steering vector” to mean a strictly angle-Doppler dictionary

element. But radars are becoming more fully digitized and analog-to-digital converters continue to move closer

to the individual antenna elements; pulse compression is increasingly performed digitally [5]. Thus we mean the

steering vector to represent the all-dimension dictionary element. In short, the i-th column of S is the return one

expects to receive from a target in the i-th voxel.

White Gaussian noise n ∈ C
n also enters the measurements. The measurement can be decomposed into signal

and interference components:

y = ys + yi = (Sx) + (Sc+ n) = S(x+ c) + n. (1)
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STAP techniques estimate the interference covariance matrix R = E
[
yiy

H
i

]
from training data and use its

inverse to generate a whitening filter: W = R−1S. Computing R−1 directly through sample matrix inversion can be

expensive. Other methods exploit the low-rank structure of the clutter to estimate R−1 from an eigen-decomposition

of the sampled data. In either case the constructed filter maximizes signal-to-interference-plus-noise ratio (SINR)

when applied to the measured data:

x̂stap = WHy = SHR−1y. (2)

This is as compared to the adjoint, or matched filter, estimate which does not make use of the interference

covariance information:

x̂adj = SHy. (3)

Figures 1 and 2 illustrate the ability of the STAP filter to reduce the contribution of clutter in the estimate while

maintaining target detectability in uncluttered regions. The line of clutter slices through the third projection in the

figures due to the interaction of the sensor platform motion with the stationary ground clutter. In the adjoint estimate

that clutter line appears as a strong ridge in the angle-Doppler plane making the target invisible. In the STAP

estimate the clutter has been nulled by the adaptive filter and the target can be easily located. These techniques find

common use in downward looking airborne radar when attempting to detect targets that exhibit radial motion.

B. Compressed Sensing

Compressed sensing is a recently developed theory by which some under-determined systems of linear equations

can be shown to be solvable. If the problem to be solved obeys certain conditions an exact or approximate solution

can be found with a rigorously bounded degree of certainty [6], [7].

Applications of compressed sensing to various radar problems have also been made in multiple-input, multiple

output (MIMO) [8], synthetic aperture radar (SAR) [9], detection [10], and subsurface imaging [11].

The formulation of the radar sensing problem presented in (1) makes application of compressed sensing techniques

a natural step. Compressed sensing operates under two assumptions [12]:

1) Sparsity: The signal to be reconstructed has few non-zero elements or can be represented in some basis by

few non-zero elements

2) Incoherence: The measurement model is incoherent with the sparsifying basis

Sparsity is evident in the formulation of (1). The target indicator vector x is a sparse vector as the number of

true targets in the observation space is small relative to the number of gridpoints that have been laid in that space.

In many realistic applications this will hold true. For instance, in a airspace monitoring radar most points in the

observable sky do not contain an airplane but those that do compose the support set of the non-zero elements of a

sparse vector. Other applications like synthetic aperture radar (SAR) in which images are formed of an area of land,

do not exhibit native sparsity and may require representation in some other sparsifying basis. Because of the large

extent of the observed clutter, downward looking MTI radar of the sort we consider herein does not yield a native
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sparsity. However, by using appropriate filters the desirable scene can be separated from the undesirable clutter and

the sparsity can be found in the scene subspace.

Incoherence must then be addressed. If y is the set of Nyquist-sampled measurements then it represents all the

(bandlimited) electromagnetic information passing over the measurement aperture during the period of observation

(a single coherent processing interval). The compressed measurements we model as another vector

z = Cy

where z ∈ C
m and C ∈ C

m×n. As indicated above, these compressive measurements must be incoherent with the

sparsifying basis S.

For certain types of sparsifying bases there exist deterministic measurement operators that obey this incoherence

rule. For other measurement operators such a deterministic solution cannot be shown. It can be proved, however,

that measurement operators drawn from certain distributions of random variables are highly likely to be incoherent

with the sparsifying bases [12].

The required degree of incoherence can be described by the restricted isometry property. If the combined operator

A = CS preserves the lengths of any k-sparse vector, CS will succeed with high-probability. If εk(A) is the

minimum ε such that

1− ε ≤ ||Az||2
||z||2

≤ 1 + ε

for all k-sparse z ∈ C
n. Smaller εk implies reconstruction is easier and more likely to succeed. Finding εk(A)

requires evaluating all
(
n
k

)
possible support sets of z. Adherence to this rule is difficult to ascertain except by an

expensive exhaustive search. A measure that supports weaker claims while being easier to calculate is the mutual

coherence. Define

μ(Φ,Ψ) =
√
nmax

i,j

∣∣〈φi, ψj

〉∣∣ ∈ [
1,
√
n
]

where φi is the i-th row of Φ and ψj is the j-th column of Ψ. If μ is the maximum correlation between elements

of Φ and Ψ then smaller μ implies reconstruction is easier and more likely to succeed.

The exact content of the measurement matrix C will depend on the measurement process it describes. In pulse-

Doppler radar this process may introduce incoherence in fast-time by mixing incoming signals with pseudo-random

modulation sequences before sampling slowly [13], it may introduce incoherence in slow-time by staggering the

pulse repetition interval, it may introduce incoherence in the spatial domain using an adaptive measurement array.

These ideas will not be broached in this work. (Given that the designer enjoys some freedom in the design of

the measurement process that C describes, it could be adapted in coordination with the waveform and sensing

geometries described by S and the interference described by R to maximize target detection.) We simply construct

C as a random matrix filled with independent and identically distributed (i.i.d.) random variables that take on the

values ±1 with equal likelihood.

A simple estimate of the target vector from the compressed measurements z can be computed by performing a
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compressed adjoint which applies the matched filter to that measured data.

x̂cadj = SHCHz.

This method has low computational cost but does not necessarily yield a sparse solution.

A better estimate of the target vector can be computed by solving a convex linear program such as an �1-regularized

least-squares

x̂cs = argmin
x

||z−CSx||22 + τ ||x||1 (4)

where the first term of the minimization objective is the Euclidean norm of the residual that enforces fidelity to

measured data and the second term is the one-norm of the estimate that promotes sparsity in the solution. The

parameter τ weights these sometimes competing priorities.

C. CS and Clutter

The field of adaptive radar and specifically STAP has been well-researched over the last 20 years. Compressed

sensing has, itself, seen much work in the past five years. There has been little treatment of the intersection of these

two fields.

The concepts of reduced-rank and reduced-dimension STAP have something to offer to this topic [1]. By exploiting

the low-rank nature of the interference these techniques reduce the computational and training burden that full-rank

STAP techniques impose. Additional work from a sparse-estimation perspective has taken place recently. One paper

that presents an �1-regularized MTI is given by Yang, et. al., [14]. This technique assumes sparsity in the rank of

the interference subspace relative to the number of system degrees of freedom. In [15] the authors operate in the

angle-Doppler domain and solve a compressed sensing optimization problem only over the portion of the plane that

is judged to be outside the clutter ridge. Our work differs from those by optimizing in range-angle-Doppler space

and by using the covariance matrix to adaptively reduce clutter and other structured interference.

II. METHOD

A. ASPEN

To test against realistic data we simulate measurements in the Adaptive Sensor Prototyping ENvironment (ASPENTM)

tool developed at Georgia Tech Research Institute’s Sensors and Electromagnetic Applications Laboratory. ASPEN is

a high fidelity clutter modeling simulation that supports flexible sensor definitions. We model a 32-element uniform

linear array, 32-pulse coherent processing interval, and 128-sample range window, yielding a data cube of 131,000

samples. The outputs consist of data (y) measured at the Nyquist sampling rate, true target locations (from which we

derive x), interference covariance (R) as well as simulation parameters like the transmitted waveform and relevant

geometry.
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B. Linear Model

The ASPEN measurement model is non-linear, breaking the assumption in (1): targets can exist off grid locations

and nearby targets interfere in non-linear ways. But to compute a CS estimate a linear model is required. Thus we

developed a forward model, i.e. S, that approximates the ASPEN simulation.

This model describes simple propagation phenomena. Place the i-th point target at range ri from the first array

element and angle θi from the array boresight with range rate vi. This target is illuminated by a series of ns

identical waveforms with carrier frequency f0. Each waveform p(t) = e2πjf0te2πiφ(t) with pulse repetition interval

Ts. This waveform has some bandwidth β, whether by swept frequency chirp, phase code sequence, or some other

modulation function. The illumination experienced at the i-th target is then

ei(t) = α

ns−1∑
q=0

p(t− qTs − (ri + viqTs)/c)

for some scalar α.

The moving target imparts a Doppler frequency shift on the waveform commensurate with the opposite of its

radial velocity and some of this energy is reflected back to the antenna array to be received. The array consists of

ne individual array elements each separated by a distance d from the next. We neglect any element pattern of each

array element instead model them as isotropic receivers. Each of these array elements makes nf uniformly-spaced

fast time samples on in-phase and quadrature channels; each of these samples is a point in the complex plane. Each

sample is separated in time by Tf = 1/β from the next. The signal reflected from target i received at element k is

fi,k(t) =

ν

ns−1∑
q=0

p

(
t− qTs − 2(ri + qviTs)− kd sin θi

c

)
e2πj

vi
f0c

for some scalar ν.

This linear model can be represented explicitly as a matrix. Each column of the matrix S is the return from

a target at the corresponding range-angle-Doppler position in space. The size of the matrix grows rapidly as the

dimension of the sample space and search space increase. For a problem of size 32× 32× 128 as mentioned above

the matrix has 1.7× 1010 elements. Therefore, the most feasible, efficient way to implement this model is not by

explicitly storing the matrix but by performing discrete Fourier transforms along the angle and velocity dimensions

and a convolution in the range dimension. For computational gains, these can be implemented using the Fast Fourier

Transform (FFT). By this means we reduce storage required almost entirely and processing time considerably.

As in any real estimation problem, the true measurement model differs some from the model used for analysis.

Though this linear model does not exactly match the more realistic simulation it provides theoretical and computational

tractability while maintaining fidelity to the reference and serving the purpose of estimating target parameters.

C. Solution Methods

Various estimates of the target scene can then be computed from the measured data. We could compute the

matched filter (3), least-squares estimate (using conjugate gradient method), STAP estimate (2), and a compressed
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sensing estimate using the Templates for First-Order Conic Solvers (TFOCS) algorithm [16] and implementation

[17]. This toolset implements a number of state-of-the-art solution techniques for large-scale convex problems and

provides a flexible framework for the solution of alternative problem formulations.

Solving �1-regularized least-squares problem (4) requires a value be selected for τ . Any τ ≥ τmax = ||x̂cadj ||∞
will cause x̂ to return as the zero vector. We select τ = .01τmax.

D. Proposed Extension

None of the mentioned compressed sensing solution methods, as described, are equipped to handle structured

interference. If R is the covariance matrix of the fully sampled interference then the covariance matrix of the

interference in the compressed domain can be expressed as Rc = CRCH . The simplest way to obtain an estimate

of the scene from the compressed measurements that also includes the covariance information is

x̂cstap = SHCHR−1
c z.

This is analogous to the x̂stap solution defined in (2) in that the matched filter is post-multiplied by the covariance

matrix inverse to whiten the interference. To compute this estimate one incurs the cost of inverting the covariance

matrix (or parametrically estimating the inverse) but gains a a good deal of clutter suppression as we will show in

our results. However, this technique does not favor sparse solutions.

In addition to this technique, we propose a covariance-aware CS (CA CS) that accounts for structured interference

in a compressed sensing framework. As in STAP methods this is done via the interference covariance matrix inverse.

The original �1 regularized least squares problem (4) can be modified as follows:

x̂cacs = argmin
x

(z−CSx)HR−1
c (z−CSx) + γ ||x||1 . (5)

Here γ is set relative to the entries in R−1
c . Specifically γ = τ

∣∣∣∣R−1
c

∣∣∣∣
F

where ||·||F is the Frobenius norm

which returns the largest singular value of its argument.

The first term in the objective function penalizes deviations from the measurements in interference-free regions

but less so in interfered regions. This term is akin to a Mahalanobis distance. The second term penalizes large

entries in the solution. Thus the entries in the interfered region are unconstrained by the first term they are allowed

to be driven to zero by the second term. And the first term maintains data-fidelity in the clear entries while the

second term promotes sparsity. Here the γ term serves the same purpose as τ in (4): balancing the weight of the

sparsity promoting �1 norm against the fidelity-preserving �2 norm.

III. RESULTS

A. Scoring Metrics

We are interested in the ability of a radar system to identify the locations of targets in a field of noise and

structured interference. Therefore we will present results in terms of probability of false alarm (Pfa) and probability
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of detection (Pd) rather than the more standard (in CS literature at least) Euclidean error norm. Also, we use a

non-standard performance measure, detection quantile Qd, to look at the consistency of performance.

Consider t targets placed arbitrarily in the observation area. The scene description vector x ∈ C
n contains

mostly zeros, but at those entries that correspond to the grid-points closest to the true target locations entries are

non-zero values. Call these locations P = {p1 . . . pt}. By some estimation technique x̂ is produced which is an

approximation of x. For a given probability of false alarm Pfa a detection threshold Dth can be computed: let

x̂s contain all the elements of |x̂| sorted in increasing order, then Dth = x̂s (�Pfan)�). Finally Pd is the fraction

of elements of the estimate at the true target locations that have magnitude greater than or equal to the threshold:

Pd = frac (|x̂ (P)| ≥ Dth)

Detection quantile is, roughly, the Pfa required to achieve a perfect Pd. Define Qd = frac(|x̂| > min(|x̂(P)|). If

Qd = 0 it implies that the true target position was the highest-amplitude bin in the estimate.

Other possible scoring metrics include the false discovery proportion and non-discovery proportion described in

[18].

B. Signal Quality Definitions

Detection results are only interesting when presented in the context of a known signal quality. Definitions of

signal-to-noise ratio (SNR), signal-to-clutter ratio (SCR), and signal to interference ratio (SIR) are often slippery and

vary with usage. Furthermore, these values can be measured at either the input or the output of the signal processing

chain. In this work define these functions as described in this section. Again let P refer to the t true target locations

in x and A refer to all locations in x. And consider measurements collected such that y = A(x+ c) + n and x̂

produced by some technique to estimate x.

Define input SNR as:
max(|Ax|)2

var(n)
.

Define input SCR as:
max(|Ax|)2
var(Ac)

.

Define input SIR as:
max(|Ax|)2
var(Ac+ n)

.

On the input side, where we use the max(·) function we do so to represent the modulus of the complex waveform

that is received. If the waveform returns from more than one target overlap (before pulse compression) the modulus

of the overlapping segment may constructively or destructively interfere based on the relative phases of the targets.

On the output side of the receiver, pulse compression or some other estimation technique has been performed and

the power for each individual target can be measured independently. In the event of multiple true targets, we take

the arithmetic mean of the corresponding SIR values. Define output SIR as:

mean(x̂(P)2)

var(x̂(A \ P))
.
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C. CS in Noise

To test the effectiveness of compressed sensing techniques in the presence of clutter we first develop results

demonstrating the performance of these methods presence of noise. We are primarily interested in the ability to

detect targets based on the compressed measurements.

In particular, we vary the SNR while holding all other parameters constant. At each SNR point we calculate

an average probability of detection Pd. The detection statistics are dependent on the particular realization of the

random noise, clutter, and target locations so we average the results over many trials to develop performance curves

for each technique over the SNR domain.

These results are shown in Figure 3. Notably, this plot shows that a reduction in sampling rate (by the compressive

sampler) results in a commensurate increase in noise floor as shown in [19]. This is evident in the 13 dB rightward

shift from the adjoint solution to the 20× undersampled CS solution. Accordingly the other solutions are shifted

right by 3 dB for every additional octave (2×) of undersampling. So it appears that for applications in which signal

power competes with noise power compressed sensing meets fundamental limitations. Sampling more slowly causes

the noise to additively fold over the sampled spectral region competing with fixed signal energy.

To test the robustness of these results we modified the problem slightly in three different ways: by quantizing the

returns from the at the point of measurement, by varying the probability of false alarm threshold, and by adding

additional targets to be detected. In Figure 4 we show that the results of these experiments are virtually unchanged

by quantizing the measured returns to 8 bits. In Figure 5 we show that though performance is decreased upon

demanding a higher Pfa the impact on the CS estimate is not greater than the impact on a standard adjoint estimator.

And in Figure 6 we show that target detectability is impacted by the addition of more targets to the scene but, again,

the impact is no worse than that observed in the adjoint case.

D. CS and CA CS in Clutter

Clutter presents a different challenge as clutter returns are correlated with the transmitted waveform just as signal

returns. The sparsity favoring aspect of the compressed sensing solution is as likely to identify strong clutter returns

as it is the true target returns. This is shown in Figure 7 by the green lines that underperform the matched filter

(adjoint) solution.

By contrast the proposed covariance-aware compressed sensing (CA CS) described in (5) shows success beyond

that of the compressed sensing estimates. By using the covariance information one can even surpass the performance

of the fully-sampled (but covariance-ignorant) matched filter. Still, the fully sampled adaptive STAP filter remains

the gold standard. The results of this technique are also shown in Figure 7 by the blue lines. Of particular interest is

the 20× undersampled solution that achieves nearly the same detection performance as the STAP solution.

This improved performance of CA CS relative to the non-adaptive CS and even relative to the fully sampled

adjoint can be observed in Figure 8. This figure shows that the estimates that use the covariance information are

able to correctly separate the target from the surrounding noise and clutter while the non-adaptive techniques are

less-able to do so.
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Aggregating this type of result over many random trials produces the results shown in Figure 9. An interesting

comparison can be drawn between Figures 7 and 9. When judging by Pd as in Figure 7 the 40× undersampled CA

CS solution outperforms the fully-sampled adjoint. However when judging by Qd, as defined in Section III-A and

shown in Figure 9 the fully-sampled adjoint shows superior performance to the 40× undersampled CA CS estimate.

This shows that the adjoint solution often assigns a high amplitude to the correct bin but doesn’t as often put it

among the highest bins to be counted as a detection. The 20× undersampled outperforms both of these estimates as

measured by both Pd and Qd.

IV. CONCLUSION

A. Review

Structured interference, including clutter, presents a different challenge to estimation techniques than does white

noise. This structure can be exploited to improve performance. While estimation of sparse vectors in the presence of

white noise has been well-studied in compressed sensing literature, estimation in structured noise has not. We show

that compressed sensing techniques can be robust to structured interference and propose a method for exploiting the

interference structure to improve detection statistics.

B. Future Work

A number of points remain to be investigated. Future work should proceed along many dimensions:

• The results presented here test the performance of the CA CS algorithm in the presence of clutter; by simulating

jammer returns these techniques could be tested in the presence of another common structured interference

type.

• The CA CS technique described in II must be refined with respect to selection of the balancing parameters and

estimation of covariance matrix from compressed measurements.

• Theoretical bounds that describe the number of measurements required for a given sparsity level and signal

quality would guide theorists and designers alike.

• A technique for customizing transmitted waveforms using prior knowledge of target locations (for instance from

a target tracker running on detections) could improve detectability while holding transmitted power constant.

• To be convincing these techniques must be paired with a more detailed description of the hardware required to

collect the types of measurements required in a CS receiver as well as the size, weight, and power gains that

could be made by designing to a CS specification.

• Finally, the proliferation of airborne research platforms like unmanned aerial vehicles (UAVs) offers the

opportunity to gather data from flight and process using the proposed techniques.

There remains much progress to be made but the work presented here shows that CS radar systems can perform at

a high level even in the presence of clutter.
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Fig. 1: The adjoint estimate x̂adj is shown reshaped into the range-angle-Doppler cube. These three views are

summations of the estimated intensity along each of the three dimensions. The marker indicates the true target

location in each view.
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Fig. 2: The STAP estimate x̂stap is shown reshaped into the range-angle-Doppler cube. These three views are

summations of the estimated intensity along each of the three dimensions. The marker indicates the true target

location in each view.
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Fig. 3: Compressed sensing detection performance degrades with subsampling rate. Each additional octave of

undersampling results in a raising of the noise floor by a factor of two, or 3 dB.
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Fig. 4: Both detection techniques are robust to quantization to more than eight bits.
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Fig. 5: As the probability of false alarm is varied the threshold at which compressed sensing and matched filter

techniques to detection targets is changed.
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Fig. 6: By placing additional targets in the search volume the probability of detection decreases comparably in the

compressed sensing and the matched filter techniques.
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Fig. 7: The CA CS method sub-samples the data just as the standard CS method does, however it takes into

account the covariance matrix that describes the interference structure. By doing so it improves the probability of

detection over the CS case as well as beyond the fully sampled, matched filter case that does not use the covariance

information. These results are shown with a probability of false alarm of .01.
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Fig. 8: A comparison of various solution methods applied to a representative sample problem with input SNR of

0 dB, input SCR of -20 dB. These plots show the relative amplitude of all the bins in the estimate produced by

the identified technique. The red circle indicates the amplitude of the bin closest to the true target location. These

results show that only the adaptive techniques, STAP and CA CS, correctly assign the bin closest to the target the

highest amplitude.
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Fig. 9: A related evaluation criterion, the detection quantile Qd measures the average ranking of the true-target

bin among all the bins in the estimate. A Qd of zero is perfect. These results show that again, the fully-sampled

STAP estimate performs better than all other techniques. Also, the 20× undersampled CA CS estimate is shown to

consistently achieve performance near that of the fully-sampled STAP and better than the fully-sampled adjoint. In

these results the 20× sampled CA CS estimate is shown to be inferior to the fully-sampled adjoint, in contrast to

the performance as measured by the Pd shown in Figure 7.
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