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Abstract—This paper shows the results of two different methods
of implementing the semi-greedy auction algorithm for hypoth-
esis selection in the multiple hypothesis radar data association
problem. The goal is to compare the Semi Greedy Track
Selection (SGTS) technique proposed by Waard, Capponi et. al.
to a traditional semi-greedy approach [2], [3], [4], [5], [6]. This
study uses detection data generated by a medium fidelity digital
simulation of targets and sensors passed through the developed
multiple hypothesis system. The results show that there is a
crossover point at 8 solution sets for simplistic scenarios and
a crossover point of 3 solution sets for more complex scenarios.
This result would suggest that implementations where more than
8 solution sets in the semi-greedy approach are to be considered,
the traditional semi-greedy approach is favorable. In problems
where less than 3 solution sets are to be considered, the SGTS
method provides better performance.
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1. INTRODUCTION
In a typical radar tracking system, the goal is to resolve the
measurements data and associate those measurements so as
to accurately represent the target’s state in time. Each of the
measurements collected can be used to update an existing
estimated target state or generate a new target state estimate.
Every time a set of measurements is acquired, this firm deci-
sion must be made. Multiple hypothesis logic simultaneously
considers several associations until it is necessary to make
a firm decision due to finite computational resources. This
condition is what sets the multiple hypothesis approach apart
from a single frame approach - it allows the representative data
association to change within a given time window. MHT was
first proposed by Reid [7], and more recently, a Track-Oriented
Multiple Hypothesis Tracker (TOMHT) has been proposed
as a viable way of performing real-time data association in
radar tracking problems [8], [9], [10]. A TOMHT is better
at performing data association in complex target scenes than
traditional single frame data association techniques, but it
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requires much more computational power to handle all of
the track hypotheses generated. At the root of the TOMHT
algorithm is a selection algorithm that is implemented to
determine which associations out of a set of hypothesis tracks
are most likely. The semi-greedy auction algorithm is a
preferred technique for solving this type of problem due to
the simplicity of implementation, and its ability to provide an
optimal or near optimal solution with tractable computational
expense (as compared to optimal techniques for solving the
problem) [2], [3], [4], [5], [6].

Work done by Capponi and Waard is of particular interest,
since the premise of their approach involves a semi-greedy
auction algorithm in which hypothesis solution sets are not
repeated. This method effectively performs a breadth first
search of the cost matrix. The approach suggested in this
study implements a semi-greedy approach that allows for the
duplicate hypothesis solution sets. Allowing for duplicate
hypothesis solution sets effectively performs a depth first
search of the cost matrix. This paper will show under what
conditions each method of solving the semi-greedy problem
will be favorable and will investigate methods of posing
problems that are representative of what one would expect
to see in an MHT. The remainder of this paper will describe
the methods used to set up and solve the cost matrix using both
proposed semi-greedy approaches, study results, and major
conclusions that can be derived from the work.

2. METHOD
Within the TOMHT framework, a windowing period exists
during which the TOMHT can go back and change the asso-
ciation of measurements. This window consists of multiple
frames where each frame is defined as a time at which the
sensor collects a set of measurements. (In a radar system,
a frame could be considered a single pulse or a coherent
processing interval. It is defined as the time at which the data
collection occurs.) At every frame, the measurements are put
into potential hypotheses such that a particular measurement
can be considered to update a track, or initiate a new track.
Additionally, each existing track can be considered to be
updated by a measurement, or coasted. In the TOMHT, each of
these possibilities are simultaneously considered allowing for
a particular measurement to be used in multiple hypotheses.
The resulting associations are then scored based upon the
probability that it represents the correct association decision.
Once all of these pairings have been created, it is necessary to
determine the set of tracks that are most likely out of the set
of all hypothesis tracks. The constraint that must be imposed
upon this problem is that the solution set cannot be updated by
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the same measurement such that all tracks will be updated by
an exclusive set of measurements not found in part or whole
in any other tracks within the solution set. A semi-greedy
algorithm is applied to address this problem.

Problem Formulation

Assume there exists a set A of N tracks. A critical section of
the processing selects which set of tracks, out of all possible
sets of tracks, is the best feasible set. Let the i-th track have
the following attributes:

• A measurement history hi ∈ ZM where M is the number
of frames over which measurements may appear in the track
history of more than one track, and each element of hi is an
index to a particular measurement that was used to update
track i.
• A likelihood score si ∈ R based on the goodness of fit
of the kinematic states and possibly other features of the
measurements indicated by hi

To find the best feasible set of tracks one must define “best”
and “feasible” in relation to a set of tracks.

The score of a set of tracks is simply equal to the sum of the
likelihood scores of the set’s constituent tracks. A set with a
higher score is better than a set with a lower score. Because a
track with a negative score would reduce the score of any set, a
safe assumption to make is that all tracks under consideration
have scores greater than zero. The score of some set S is
defined as

g(S) =
∑
i∈S

si

Feasible sets of tracks are first defined by a function of two
measurement histories:

v(hi,hj) = min
k=1...M

|hi(k)− hj(k)| .

v(hi,hj) = 0 indicates that tracks i and j share a measure-
ment in their history. A feasible set of tracks is any set of
tracks for which each track in the set shares no measurements
with all other tracks in the set. Let f(S) indicate the feasibility
of some set S:

f(S) = {v(hi,hj) : i ∈ S, j ∈ S, i > j}
If 0 ∈ f(S) then S is infeasible.

So the best feasible set is:

B∗ = argmax
B⊆A

g(B) s. t. 0 /∈ f(B) (1)

where B∗ is the optimal solution for some variable B.

Solution Methods

The most straight-forward way to solve (1) is by an exhaustive
search. This method is the only one that guarantees the
globally optimal solution. A recursive algorithm was written
that uses a tree-based structure to traverse all possible feasible
subsets and return the score of the best subset. Also the
processing time of an exhaustive search is prohibitive. With a
real-world system, real-time processing requirements prevail.
In an analysis tool, such as the one implemented in this study,
minimizing computational time is important to more closely
mimic actual radar systems, to allow for additional frames

to be considered in the TOMHT which leads to more robust
solutions, and to allow for additional Monte Carlo runs to
be considered in a given amount of time. This exhaustive
search will be used to validate the two semi-greedy approaches
defined later in this section.

Due to processing constraints, a more realistic method for
solving the problem in real-time is to use a semi-greedy
auction algorithm. There are other methods for solving this
optimization problem, but this study focuses on the semi-
greedy approach due to the speed at which a solution can
be found and the relative accuracy and reliability that can
be obtained [11]. Semi-greedy auction algorithms are built
on the same principle as a greedy auction algorithm, so it
is practical to first explain how a greedy auction algorithm
works before going into detail with the semi-greedy algorithm.
The way in which a greedy auction algorithm works is to find
the most desirable track in the set and add it to the solution.
Then, the remaining set of tracks will be subjected to the
constraints such that any remaining tracks that cannot be put
into the solution with the first track selected are eliminated
from further consideration. Next, the highest scoring track
from the remaining set is added to the solution. Again, the
constraints are applied and the tracks that cannot be allowed
with the second track in the solution are eliminated from
further consideration. This process repeats until there are
no tracks left that have not been eliminated or put into the set
of tracks that make up the solution. Though this algorithm is
fast, it often does not obtain the desired solution to the problem.
For this reason, the semi-greedy algorithm was developed.

SGTS

Capponi and Waard have suggested that a suitable approach
to finding the suboptimal solution is to implement what they
refer to as the Semi-Greedy Track Selection (SGTS) algorithm
[3], [5]. This method is implemented by sorting the hypothesis
tracks by track score from highest to smallest into a list TR.
Next, the algorithm selects the first track in TR (the one
with the highest track score) and places it into the potential
solution S1. It then enforces the constraints by eliminating all
hypothesis tracks left in TR that share a measurement with the
track in S1. The process is repeated by selecting the next track
in TR and putting it into S1 and enforcing the constraints. This
process continues until there are no tracks left in TR. Once
TR is empty, the track list is restored. S1 is incremented to S2,
and the first track in TR that is not in S1 is put into S2. (This
simply means that if the first four tracks in TR are put into S1,
then the first track that is placed into S2 is the fifth track in TR.
Any of the first four tracks can be a part of S2 later on, but
they may not be considered as the initial track in the solution
set S2.) From here, the same process is repeated with the first
allowable track in TR being placed into S2, then constraint
enforcement and so on. The process is continued until there
are no tracks left in TR. (At this point S2 is the second solution
set to TR.) The SGTS method allows for j solution sets to
be formed. The final solution to this approach is obtained by
summing the scores of the tracks in each solution set, and the
solution set with the highest total score is considered to be the
sub-optimal (and in some cases can be the optimal) solution to
the problem. Though it is possible to find all potential solution
sets by repeating this process until all sets Sj have been found
for TR, this is typically not the goal for TOMHT applications
where run time constraints are an issue. This algorithm is
typically set up such that a default number of iterations are
allowed so that there is a maximum computational load seen
by the processor. A key concept to note about this algorithm is
that the tracks in a solution are not allowed to be thesis tracks
(the first track put into each Sj) in another solution set. This
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concept is by design so that solution sets are not repeated, and
it provides more of a breadth first search of TR.

Standard Approach

The alternate method that is used in this paper is a traditional
approach to the semi-greedy problem. In this approach,
the track list TR is sorted by track score from highest to
smallest. The first track in the list is put in solution set
S1. Constraints are then enforced, and any tracks in TR
that share a measurement with the track in S1 are eliminated
from consideration. Then, the highest remaining track in
TR is placed into S1, the constraints are enforced, and the
process continues until all tracks have been eliminated from
TR. This completes solution set 1. The difference between
this approach and the SGTS approach in the previous section
is that tracks found in previous solution sets may be used as
thesis tracks for future solution sets (thus the repeat vs. no
repeat nomenclature). With the solution set S1 completed, the
track list TR is restored. Now, the second track in TR is used
as the thesis track in S2. The same process is repeated until
j solution sets are completed. This method is very similar to
that mentioned in the SGTS section, but the key thing to note
here is that the standard approach allows for solution sets to
be identical. It is possible for S1 and S2 to be composed of the
same set of tracks. This repetition of answers was considered
undesired as work was being repeated within the algorithm,
and thus motivated the No Repeat method. However, there is
a dilemma with this approach in that though the SGTS does
ensure that a larger variety of solution sets is obtained, it is at
the cost of overlooking some solution sets that may not in fact
be an exact match of a previous solution set. The nature of the
standard semi-greedy approach is more of a depth first search
where the focus of the algorithm will be using the highest
scoring tracks in TR as thesis tracks. SGTS spans TR skipping
over thesis tracks that are higher on the list that are a part of an
existing solution set. This study focuses on whether a depth
first search or a breadth first search method should be applied
to TOMHT.

3. RESULTS
Test Scenarios

Since the performance of an optimization algorithm depends
heavily on the characteristics of the problem set, the decision
was made to test the semi-greedy approaches with realistic
data. To develop this data, a medium fidelity digital simulation
was used modeling both targets and a sensor. Three different
scenarios were designed with increasing number of constant
velocity (CV) targets per scenario. Scenario 1 featured a single
CV target being tracked by a radar. Scenario 2 was similar
but with two CV targets. Scenario 3 featured three CV targets,
two of which were on closely spaced trajectories.

These scenarios were executed with an MHT generating
track hypotheses based on measurements received from the
radar. This tracker groups hypotheses into clusters to produce
separable sub-problems that can be solved in isolation from
the other sub-problems [8], [9], [10]. Two tracks must be in the
same cluster if those two tracks have any common elements
in their measurement histories. While this took place, the
scores of all the tracks in each cluster, and which tracks shared
measurements were recorded.

Figure 1 shows the scores of all the track updates over the
duration of execution of the various scenarios. It is evident
that the simpler Scenario 1 produced higher scoring tracks

and more tracks grouped near that highest score. Scenario 2
produces a sharp drop off from the highest scoring tracks with
many tracks scoring in the mid range. Tracks in Scenario 3
had lower scores overall and fell off steadily.
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Figure 1. All the scores for all the track updates are shown for
each of three scenarios tested. The scenarios produce differing
scores. Scenario 1 produces higher scoring tracks than either
of the others.

Since the semi-greedy algorithms under consideration operate
on these cluster sub-problems, an important consideration is
the distribution of scores within a cluster as well as overall.
Figure 2 shows the score of each track in a cluster (normalized
to the highest-scored track in that cluster) as a function of
the rank of that track within the cluster. The curve drawn
from Scenario 1 data shows that the scores are tightly bunched
within the cluster; approximately 80% of the tracks have a
normalized score above 0.8 and almost all the tracks score
above 0.6. By contrast the curve drawn from Scenario 3 data
shows that only 30% of the tracks score above 0.8.
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Figure 2. The distribution of scores within an average cluster
differed by scenario as well. Scenario 3 shows more steeper
falloff in scores whereas in Scenario 1 the scores are more
closely bunched near that of the top-scoring track.

These plots do not show the structure of the interaction, i.e.,
which tracks share measurements with which others. The
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success of the semi-greedy methods is influenced by the degree
to which high-scoring tracks interact more with other high-
scoring tracks or with lower-scoring tracks. To characterize
this interaction, a matrix Hk for cluster k is produced. If
the k-th cluster contains n tracks Hk ∈ Rn×n, each element
Hk(i, j) is an indicator as to whether tracks i and j share
a measurement in their histories. (If they do Hk(i, j) = 1,
otherwise Hk(i, j) = 0.) This structure implies Hk = HT

k .
Because the size of these matrices depends on the number
of tracks in a cluster, they will likely not all be the same
size. In order to find an average interaction matrix over the
course of the scenario, Hk is resampled to a common size
(here 500× 500) to form H̃k. If there are m clusters, the final
H̃ = 1

m

∑m
k=1 H̃k. These H̃ are plotted in Figures 3, 4, and

5 for Scenarios 1, 2, and 3 respectively.

Figure 3 shows that most of the tracks in clusters in Scenario
1 share measurements with most other tracks. This effect
is largely independent of the track score within the cluster.
Figure 4 shows that for Scenario 2 the higher scoring tracks
tend to share measurements with other high scoring tracks.
Figure 5 shows that this tendency holds for Scenario 3, and
there is less sharing of measurements overall. These figures
show that low scoring tracks tend to share measurements with
few other tracks, particularly so in more complex scenarios.
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Figure 3. The interaction of tracks within clusters in Scenario
1.
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Figure 4. The interaction of tracks within clusters in Scenario
2.

Looking at the results of the semi-greedy algorithms in
these three scenarios alone is not sufficient to adequately
characterize performance. For this reason, the distributions
measured in these three scenarios were used as inputs to a
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Figure 5. The interaction of tracks within clusters in Scenario
3.

Monte Carlo analysis that could be controlled and repeated.
The test problem was designed with:

• 12 scored frames, which is the window over which the
optimization operates
• 80 tracks, with scores distributed according to those distri-
butions observed in Figure 2
• 12 measurements per frame, where tracks share measure-
ments according to those distributions observed in Figures 3,
4, and 5

These problem sizes are comparable to those observed in
typical MHT problems. Each of these problems was solved
with two different semi-greedy approaches: that described by
Capponi and Waard in [3] and the standard approach described
above, and was repeated 100 times to develop measures of
performance.

In addition to the two semi-greedy algorithms described, each
problem was solved with a recursive tree-based exhaustive
algorithm to find the maximum solution. This technique
tests all feasible combinations to find that which produces
the maximum score.

For Scenarios 1, 2, and 3 Figures 6, 7, and 8, respectively, show
the average performance of these two semi-greedy approaches
relative to the ideal as a function of iteration number. One
should note that the SGTS algorithm converges more quickly
in early iterations than the alternative. This is because the
condition imposed by the prohibition on repeating forces
greater variety in the early search space. However, as the
number of iterations increases, it becomes difficult to find
suitable starting tracks that have not featured in one of the
earlier hypotheses and performance levels off. Whereas, when
the algorithm may use tracks that have already found a place
in an earlier hypothesis as the first track in a subsequent
hypothesis, performance continues over more iterations.

The quicker-starting nature of the non-repeating algorithm
compared with the superior terminal performance of the
repeating algorithm produces a crossover point. For iteration
numbers less than this crossover point the non-repeating
algorithm is superior. For iterations greater than or equal
to the crossover point the repeating algorithm is superior.
Figures 9, 10, and 11 show this crossover point for the test
scenarios. In Scenarios 2 and 3 the crossover point is usually
the second iteration and the rest of the time the third iteration.
For problems like these, as long as the system designer plans
to allow more than two iterations it is always better to use the
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repeating algorithm.

Of note is that Scenario 1 pushes the crossover point at times to
eight. This increase relative to the crossover points observed in
the other scenarios is due to the degree of interaction between
the tracks in clusters as well as the distribution of scores within
a given cluster.
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Figure 6. Average score at each iteration using Scenario 1
distributions is shown for both methods.
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Figure 7. Average score at each iteration using Scenario 2
distributions is shown for both methods.

4. SUMMARY
This study has endeavored to reach a better understanding
of semi-greedy auction algorithm approaches. From the data
shown, the selection of the proper algorithm will depend upon
the distribution of track scores, the coupling between high
scoring tracks and low scoring tracks, and the number of
iterations allowed in the semi-greedy problem. The semi-
greedy algorithm is a logical choice for MHT applications
because of the ability to obtain a suitable solution to the
optimization problem in a short amount of time. From this
study, it would seem that if a significant number of solution
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Figure 8. Average score at each iteration using Scenario 3
distributions is shown for both methods.
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Figure 9. Histogram of crossover iteration for Scenario 1.

sets within the semi-greedy problem were to be considered
(roughly 10 or more), then problem would favor the traditional
method that does repeat solutions. However, if only two
solution sets were to be considered, then the SGTS suggested
by Waard and Capponi would be a better technique to solve
the problem [3], [5]. However, before either implementation is
chosen, a designer should first try to determine what the nature
of the problem that they are solving will involve. Having the
knowledge of the coupling in the system and the distribution
of track scores will allow for the best decision to be made.
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