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Abstract—As unmanned platforms become more common, the
desire for lightweight, low-power, inexpensive radar systems
has increased. The impact of sensor calibration errors on a
distributed-aperture radar utilizing compressed sensing tech-
niques is explored herein. We developed a model to derive
performance curves for detection of targets in range-angle-
Doppler space using a number of single element radar trans-
mitters/receivers versus the accuracy to which the locations of
these sensors are known and the precision to which the system
can be time-synchronized. Our results show that the compressed
sensing process is not brittle with respect to modeling errors of
this type.

Index Terms—Multiple Input Multiple Output Radar; Com-
pressed Sensing; Modeling Error

I. INTRODUCTION

THE RECENT dawn of unmanned platforms has given
new impetus to the desire for lightweight, low-power,

inexpensive radar systems to provide capabilities once found
only on high-end platforms. Toward this goal we investigate
the feasibility of a distributed-aperture radar system that uses
compressed sensing concepts to lower the system communica-
tions throughput. Of particular interest is the performance of
such a system in the presence of sensor position and temporal
synchronization uncertainty.

A. Motivation

We investigate the feasibility of using multiple simple
elements cooperatively to form a coherent MIMO radar array.
This concept has many attractive features:

1) Improved Resolution: Results showing that distributed-
aperture radar achieves improved resolution come out of
research in the field of multiple-input, multiple-output (MIMO)
radar. In a MIMO construct, the radar designer eschews the
traditional high correlation of waveforms from one element to
the next. Rather than steering the beam in a particular direction
by phase-shifting or time-delaying, the MIMO radar elements
transmit independent waveforms. MIMO radar systems typi-
cally fall into two categories: uncorrelated and correlated.

In the uncorrelated case, widely separated antennas enjoy
independent looks at the target. Since the target radar cross
section (RCS) function decorrelates with aspect angle, these
widely-spaced looks are exploited to reduce scintillation and
improve detection performance over the monostatic baseline

[1]. Given the uncorrelated target responses, optimal detection
necessitates summing of the target responses in magnitude
only.

Correlated MIMO radar, by contrast, does not assume or
exploit diversity in look-angle or target RCS. Rather the
transmitters and receivers are located close to one another
relative to the target. These transmitters and receivers act as a
coherent virtual array formed by the spatial convolution of the
transmit and receive arrays, increasing the effective aperture
size. In this case, the MIMO radar achieves an improvement
in angular resolution relative to a classical phased array radar
with the same number of elements [2]. It is on this second,
correlated, case that we focus our attention.

2) Simple Sensors: Since each platform in the formation
need only act as one element in a larger array, the sensing
systems aboard each platform need not possess the native
complexity of a radar developed for independent employment.
In particular the beam pattern of each sensor may (and, in
fact, must) be very broad in angle. Since angular resolution is
proportional to the radio frequency (RF) wavelength divided
by the aperture width [3]

∆θ ∝
λ

Dθ
(1)

it can be difficult to achieve useful resolution at lower
frequencies on a low-cost, small platform.

By using a formation cooperatively the aperture width
can be increased beyond the size of any one platform. This
wide aperture can produce useful angular resolution at lower
frequencies of interest. But since each antenna is itself only an
element in the larger aperture these sensors can be made with
very few radiating elements. Whereas a multifunction airborne
radar may have thousands of phase-steered elements, the wide
beam-pattern (really the pattern of an element in the larger
MIMO array) of these simple antennas means they may have
very few.

3) Scalable Performance: Another advantage of such a
system is the flexibility it gives to the operator. Theory predicts
and our simulation results confirm that performance increases
with both number of elements and formation size. Thus an
inventory of available platforms can be allocated to various
tasks; each lends detection performance, resolution, and usable
power as necessitated by the importance or requirements of
the task at hand.



2

B. Challenges

But all these attractive features come with some notable
challenges as well. Communication demands are immense.
All measurements must be passed to a fusion center which
processes all in-phase & quadrature data. Total system com-
munication throughput required is the product of number of
elements, pulse repetition frequency, number of samples per
pulse, and quantization bits. Additionally, achieving usable
system synchronization in this sensing structure is difficult.

Therefore we use compressed sensing acquisition to reduce
the communication demands and we test the performance of this
technique in the presence of model errors arising from sensor
position and time synchronization errors across platforms.

C. Paper Organization

The remainder of this paper is organized as follows: Section
II introduces the relevant concepts of compressed sensing,
Section III details the experimental setup and method, Sections
IV and V describe the results of these and summarize the
impact thereof.

II. COMPRESSED SENSING

A. Theory

To coherently process all measurements made at all sensors
would require immense communications throughput. Com-
pressed sensing (CS) techniques, however, offer hope for
capability with fewer measurements.

CS results show that sparse signals can be reconstructed
from fewer measurements than would otherwise be required
under classical sampling paradigms [4]–[6]. This depends on
the sparsity of the signal to be acquired as well as the basis
used to measure it.

Some signal x ∈ Cm is s-sparse if at most s of its m
elements are non-zero. Measurements y ∈ Cn of x are modeled
by applying the linear operator A ∈ Cn×m so that y = Ax.
To reconstruct x accurately, the measurement operator must
collect measurements in a way that is uncorrelated with the
signal’s sparsifying basis [6]. This condition is satisfied with
high probability in the case of random measurement operators.

Such measurements can be used to estimate x by solving
the convex optimization problem

x̂ = arg min
x
||x||1 s. t. y = Ax. (2)

Similarly in the presence of noise a relaxed version of this
problem can be solved:

x̂ = arg min
x
||x||1 s. t. ||y −Ax||22 ≤ ε. (3)

B. Practice

1) Realizable CS Receivers: Applications of these ideas are
becoming reality. Because acquiring measurements according
to random projections in time is challenging from a hardware
perspective, other methods must be developed. One way to
acquire useful measurements is to follow a mix, filter, and
downsample paradigm [7]. The incoming signal is mixed with
a pseudo-random (but known) signal before being low-pass

filtered and sampled. The pseudo-random mixing signal must
have a high bandwidth but the subsequent sampling may be
much slower. This mix-filter-downsample process spreads the
signal energy in a way that enough information is present in
the narrow sampled band to estimate x. Such samplers will
act as the receiver elements of the simulated radar system.

2) Presence of Sparsity: Compressed sensing results depend
on sparsity in the signal to be measured. In most radar search
functions target locations can be sparely represented in the
observation space. In the radar field of view there may be only
a handful of targets. These targets could be missiles cresting
the horizon in a surveillance radar or moving vehicles in a
ground moving target indicator system. The nature of the search
function implies that most potential target locations are empty.

III. METHOD

To test our hypotheses about the performance and robustness
of the postulated distributed-aperture radar system we develop
a simulation framework in which targets, measurements, and
modeling errors can be represented.

A. Geometry

First, flatten the world into a two-dimensional plane. The
scenario under investigation involves net radar transmit el-
ements and ner receive elements (that may be co-located)
randomly situated in a disk of radius ρ around the origin with
a uniform polar distribution. Place the i-th transmitter at radius
rti ∈ [0, ρ] and angle θti ∈ [0, 2π). Similarly, place the i-th
receiver at radius rri ∈ [0, ρ] and angle θri ∈ [0, 2π).

B. Pulses

The i-th transmitter produces the radio frequency (RF) pulse
as a function of time pi(t) that illuminates the entire angular
observation space uniformly. Element beam-pattern effects are
neglected in this analysis.

The pulses from all net transmitters sum coherently in
different ways as a function of the transmission angle, thus we
define the effective pulse of this sparse array as a function of
transmission angle: pe(θ, t). Assuming the range to the area
under observation is much greater than ρ, the effective pulse
at angle θ can be expressed as

pe(θ, t) =

net∑
i=1

pi(t− cos(θ − θti)rti/c) (4)

where c is the speed of light. This geometry and problem
formulation builds on work presented in [8].

C. Target Returns

The i-th target, located in range-angle-Doppler space at
(rxi

, θxi
, dxi

) with complex radar cross-section χi, is illu-
minated by the effective pulse pe(θxi , t − rxi/c). It reflects
energy back to the receivers delayed according to its range
and frequency-shifted according to its radial velocity.

While the total target return at the origin is

pr(t) =

nt∑
i=1

χipe

(
θxi
, t− 2rxi

c

)
e2πjdxi (5)
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Fig. 1: Target response from matched filter reconstruction using LFM pulse in Range-Doppler, Range-Angle, and Doppler-Angle
slices. Characteristic range-Doppler coupling sidelobes features prominently in the range-Doppler view. This reconstruction is
made with uncompressed measurements according to x̂ = BHBx following the notation in (7).
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Fig. 2: Target response from relaxed `1 reconstruction using LFM pulse in Range-Doppler, Range-Angle, and Doppler-Angle
slices. Sparsity of the target indicator vector is evident, though sidelobes present some challenge to the reconstruction algorithm
when using the LFM pulse.

the return at the receiver locations will vary. Assuming the
targets are far from the sensors relative to ρ, as in (4), the
return to receiver k over time is

prk(t) =

nt∑
i=1

χipe

(
θxi
, t− 2rxi − cos(θxi − θrk)rrk

c

)
e2πjdxi .

(6)

D. Forward Operator

In order to solve the problem presented in Section I by
those techniques referred to in Section II, one must model
the distributed-aperture radar system with a linear operator.
Development of the forward operator is an exercise in listing.
The forward operator, A in y = Ax, is a dictionary of returns
from targets at each gridded location in the search space.

This process can be split into two independent operators.
The first, B, describes the geometry and waveforms through
which the locations and intensities of the targets are observed
by the receivers. The structure along the range dimension is
Toeplitz, the structure in the angle dimension is captured by the

angle-variation of the effective pulse pe(θ, t), and the Doppler
dimension is generated by making frequency-shifted copies of
the range-angle sub-operator. The full set of measurements that
could be taken at the receivers is Bx which is the over-sample
data cube.

Figure 1 shows an example target response from three targets
in the observation space. The three non-zero elements in x are
mapped through B onto the observations. The matched filter is
then applied to the returns to generate the observed response
x̂ = BHBx (following the notation in (7)). The undersampling
in the spatial is evident in the multiple sidelobes that accompany
each real target.

The second operator, C represents the sampling operations
that occur at each of the receivers to make the compressive
measurements. It is in C that the mix-filter-sample operation
of [7] is represented. The mixing operation is represented by
a diagonal matrix, filtering by a Toeplitz matrix, and sampling
by an identity matrix in which most of the rows are removed,
leaving only those samples that are to be stored. The product



4

of these three matrices is C. Finally

y = CBx = Ax (7)

are those measurements that are made and processed for target
detection.

Figure 2 shows the relaxed `1 reconstruction of three targets
using compressive measurements made according to (7). The
comparison between Figures 1 and 2 shows the sparse nature
of solutions obtained by compressed sensing techniques.

E. Errors

Thermal noise, e, in the receivers of a radar system can
be modeled as an independent Gaussian contribution to the
measurements y = Ax+e. Much work in compressed sensing
has focused on performance of measurement designs and
reconstruction algorithms in the presence of such noise.

Clutter, c, enters the measurements differently as it is
correlated with the transmitted pulse y = A(x + c) + e.
Reducing clutter is more challenging than reducing noise since
clutter scales with the power of the transmitted pulse and
responds to the same matched filter that brings targets out of
white noise.

Sensor calibration errors introduce an error to the measure-
ment operator A as in [9]. If the operator based on perceived
element locations is Â but the operator based on truth is A
then Â = A + E and

y = (Â−E)x. (8)

To simulate the effect of model errors, we introduce a time
and position error at each sensor. The position error at each
sensor was modeled as normally distributed two-dimensional
random variable with standard deviation σl in each dimension.
We consider sensor position errors relative to the wavelength of
the RF transmissions, λ. Likewise timing errors were modeled
as a normally distributed random variable at each sensor with
mean 0 and standard deviation σt. These errors are relative to
the time it takes a pulse to travel one RF wavelength: λ/c.

We then apply the true A to some scene x to generate
measurements which are fed into a reconstruction algorithm
that assumes the measurement model Â. In our case the re-
construction method is the Sparse Reconstruction by Separable
Approximation algorithm proposed in [10] with debiasing and
safeguards enabled.

IV. RESULTS

Our interest lies in the ability of a system as described in
Section I to detect targets. To evaluate that performance we
must decide on some detection criteria. Sparsity, assumed in
compressed sensing and induced by the relevant reconstruction
methods, renders moot much of the successful body of practice
that has developed around radar target detection. Constant false-
alarm rate (CFAR) detectors and much of classical Neyman-
Pearson theory are not directly applicable. For this reason, we
use a naı̈ve detector that selects as a detection any cell with an
amplitude greater than 1/10 (normalized by maximum target
amplitude).
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(a) Location Errors: Pd and Pfa vs. σl/λ
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(b) Time Synchronization Errors: Pd and Pfa vs. σt/ cλ

Fig. 3: These two figures demonstrate the similarity of errors
in time and space for genereating detection errors. When
normalized according to the wavelength both error modalities
are manifest in similar detection error curves.

Variables that drive detection performance in this problem
formulation include signal-to-noise ratio (SNR), signal-to-
clutter ration (SCR), sub-sampling factor at the compressive
analog to digital convertor, number of radiating and receiving
elements, size of element-containing disk, number of targets,
and sensor calibration errors. To explore the high-dimensional
parameter space Monte Carlo methods were used to estimate
expected performance over rays through this space.

The first of these experiments demonstrates the fall-off in
detection performance as system calibration errors increase.
Figures 3(a) and 3(b) show the effect of location and time
synchronization errors on the ability to detect targets and reject
false targets. For these results we used a 5 dB signal-to-noise
ratio, a 5 dB signal-to-clutter ratio, a sampling speed 1/16 of
the Nyquist rate, 7 transmitter/receivers elements, and 3 targets
randomly situated in a search space around 23 000 bins.
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Fig. 4: Pd and Pfa vs. σl/λ for various SNR

Simulation shows that as sensor location error increases, the
probability of detection (Pd) decreases and the probability of
false alarm (Pfa) increases as illustrated in Figure 3(a). Another
case of modeling error is time synchronization error. Simulation
results displayed in Figure 3(b) show that the performance
degradation due to this is virtually identical to the effect of
position error (when both are normalized appropriately) even
though the two errors accumulates differently with respect to
the various elements.

The second set of results, in Figure 4, shows the effect
of noise power on the detection performance vs. system
synchronization curves. Here we use the same set of parameters
as in Figure 3 but vary the SNR. Predictably, increasing the
noise level decreases performance but the impact on is not
constant. With small synchronization errors noise power does
not strongly impact probability of detection of targets but
does greatly diminish false-alarm performance. With large
synchronization errors only in the very high SNR case is any
detection possible.

V. CONCLUSION

This work helps to bound the feasible region of employ
for a system as described in Section I. Our results show that
performance in off-nominal system synchronization cases does
not suddenly evaporate. Rather, the system architect can balance
required detection performance, available signal-to-noise ratio,
and system synchronization complexity to find a successful
balance.

Future work will involve comparison to theoretical bounds,
improved waveform design, detection criteria tailored to the
specific distributions produced by these techniques, and clutter
mitigation techniques integral to the sparse solution process.
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