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Motivation

Detecting surface targets from an airborne platform has wide
utility for maintaining awareness of battlefield movements

In many such airborne surveillance applications strong ground
returns swamp target energy and cannot be neglected

Unlike noise interference, clutter cannot be mitigated by a
more energetic waveform

Targets can be separated from the clutter returns based on
structure of the clutter returns

Moving Target Indication (MTI) is an important and challenging
problem for radar designers and signal processing engineers to solve
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Pulse Doppler Radar

Airborne radar typically samples in three dimensions to build a
data cube [Richards, 2005]

Fast Time: Sample-to-sample spacing in the ADC: if the
receiver uses both I and Q channels it is the inverse of the
transmitted pulse bandwidth

Space: Element-to-element spacing the antenna array: To
avoid grating lobes this is smaller than λ/2

Slow Time: Pulse-to-pulse spacing in the CPI: This spacing
defines Doppler velocities that may be received unambiguous

These three dimensions of sampling form the measured data-cube
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Problem Setup

Write the problem as

y = ys + yi = (Sx) + (Sc+ n) = S(x+ c) + n

The most common estimation technique is the matched filter
which is computed by applying the adjoint operator

x̂adj = SHy

But this technique does not account for clutter

We set up the problem as a linear estimation problem to apply
compressed sensing techniques
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Space-Time Adaptive Processing

STAP techniques estimate the interference covariance matrix

R = E
[
yiy

H
i

]
Use that to generate a filter to minimize interference

W = R−1S

This filter maximizes SINR when applied to the measured data
[Melvin, 2004][Guerci, 2003]

x̂stap = WHy = SHR−1y

Space-time adaptive processing (STAP) is an ideal way to detect
weak targets in the midst of strong clutter returns
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STAP Example
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STAP Challenges

The interference covariance matrix must be estimated

R = E
[
yiy

H
i

]
This is computed from training data in the current CPI

But if a target is present in the training data, it will be filtered

So a new estimate can be generated from measured cells
surrounding the current cell (with some guard cells)

That estimated matrix must be inverted

x̂stap = SHR−1y

Repeated matrix inversions can be computationally expensive

Covariance matrix may be low-rank and therefore ill-posed for
inversion
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Compressive Measurements

The standard radar system acquires measurements according to

y = ys + yi = (Sx) + (Sc+ n) = S(x+ c) + n

The compressive system acquires fewer measurements according to

z = Cy = CS(x+ c) + n

C ∈ Cm×n and m < n

Under-sampling factor (USF) is n/m

This yields an ill-posed, underdetermined system of equations
which theory predicts can be solved under two conditions
[Candès and Romberg, 2007]:

1 The vector to be solved for is sparse

2 The compressive measurement vectors are incoherent with the
sparsity basis
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Proposed Extension: CA CS

A standard compressed sensing solution would solve

x̂cs = argmin
x
||z−CSx||22 + τ ||x||1

We propose a covariance-aware compressed sensing (CA CS):

x̂cacs = argmin
x

(z−CSx)HR−1
c (z−CSx) + γ ||x||1

Rc = CRCH

This problem can be solved by the same types of optimization
routines as the more generic compressed sensing problem

We extend existing CS theory to account for the known covariance
interference matrix.
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Test Environment

Adaptive Sensor Prototyping ENvironment (ASPEN),
developed at GTRI/SEAL, is a flexible radar and clutter
modeling tool used to generate test signals

Developed S, a linear model thereof, based on FFTs

For a problem of size 32× 32× 128 the explicit S has
1.7× 1010 element

Simple C is iid ±1
Solved for x̂cacs using TFOCS [Becker et al., 2012]
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Scoring Metrics

First,

Let P be the set of true target locations in x

Let x̂s contain all the elements of |x̂| sorted in increasing
order so that the detection threshold Dth = x̂s (dPfan)e)

Define two scoring metrics, one familiar one novel:

1 Probability of Detection:

Pd = frac (|x̂ (P)| ≥ Dth)

2 Detection quantile is the Pfa required to achieve a perfect Pd:

Qd = frac(|x̂| > min(|x̂(P)|)

If Qd = 0 it implies that the true target position was the
highest-amplitude bin in the estimate.

Here frac(v) = sum(v)/n where v is a n× 1 boolean vector
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Compressed Sensing in Noise
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Compressed sensing detection performance degrades with
subsampling rate. Each additional octave of under-sampling results
in a raising of the noise floor by a factor of two, or 3 dB.
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Compressed Sensing in Clutter

−50 −40 −30 −20 −10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Signal−to−Clutter Ratio

P
ro

ba
bi

lit
y 

of
 D

et
ec

tio
n

 

 

CA CS, usf=20
CA CS, usf=40
Full STAP
Full Adjoint
CS, usf=20
CS, usf=40

The CA CS method improves the probability of detection over the
CS case and the fully-sampled matched filter case that does not
use the covariance information. These results are shown with a
probability of false alarm of .01.
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Compressed Sensing in Clutter
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A comparison of solution methods applied to a problem with input
SNR of 0 dB, input SCR of -20 dB. These plots show the relative
amplitude of all the bins in the estimate produced by the identified
technique.
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Compressed Sensing in Clutter
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These results show that again, the fully-sampled STAP estimate
performs better than all other techniques. Also, the 20×
under-sampled CA CS estimate is shown to consistently achieve
performance near that of the fully-sampled STAP and better than
the fully-sampled adjoint.
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Continuing Work

1 Test against jammer returns

2 Specify selection method for CA CS balancing parameter

3 Estimate covariance matrix from compressed measurements

4 Develop bounds that describe the number of measurements
required for a given sparsity level, signal quality, and
performance specification

5 Customize transmitted waveforms and measurement
operations using prior knowledge of target locations

6 Describe the hardware required to collect the types of
measurements required in a CS receiver
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Summary

Performance of compressed sensing algorithms in the presense
of realistic correlated interference sources like clutter and
jammers has not been well-characterized

By using interference covariance information we show that
significant performance gains can be made relative to
standard compressed sensing solutions and relative to the
matched filter solution

Significant work remains to make these techniques
operationally useful

Contact Peter Tuuk at
peter.tuuk@gtri.gatech.edu
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